Dopaminergic regulation of extracellular gamma-aminobutyric acid levels in the prefrontal cortex of the rat.

نویسندگان

  • A C Grobin
  • A Y Deutch
چکیده

Dopaminergic axons in the prefrontal cortex synapse with interneurons as well as pyramidal cells. Electrophysiological data suggest that dopamine depolarizes certain gamma-aminobutyric acid (GABA)-containing interneurons in the cortex. We investigated the dopaminergic regulation of extracellular GABA levels in the prefrontal cortex using in vivo microdialysis. Systemic administration of the mixed D1/D2 dopamine receptor agonist apomorphine increased extracellular GABA levels in the prefrontal cortex, but did not increase levels of glycine; the apomorphine-elicited increase in GABA levels was blocked by tetrodotoxin infusion into the prefrontal cortex. Local administration of the D2 agonist quinpirole into the cortex via the dialysis probe resulted in a dose-dependent increase in extracellular GABA levels. In contrast, administration of the D1 agonist SKF 38393 did not alter GABA levels. The ability of systemic apomorphine to increase extracellular GABA levels in the prefrontal cortex was blocked by local administration of the D2-like antagonist sulpiride to the cortex, but was not attenuated significantly by local perfusion of the D1 antagonist SCH 23390. Similarly, the ability of local infusion of the D2 agonist quinpirole to enhance extracellular GABA levels was blocked by sulpiride but not by SCH 23390. These data suggest that dopamine agonists increase the release of GABA in the prefrontal cortex through a D2-like receptor. In view of posited changes in prefrontal cortical dopamine and GABA systems in schizophrenia, it is possible that changes in GABAergic function in the cortex in schizophrenia are secondary to changes in cortical dopamine function.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

P146: Gamma Aminobutyric Acid (GABA) and its Alterations in Stress

Gamma aminobutyrate (GABA) is a non-protein amino acid that is thought to play an important role in the modulation of the central response to stress. Mechanisms by which GABA may facilitate these responses to stress are metabolic and/or mechanical disruptions. Environmental stresses increase GABA accumulation through cytosolic acidification, induce an acidic pH-dependent activation of glutamate...

متن کامل

Cinnamaldehyde improves methamphetamine-induced spatial learning and memory deficits and restores ERK signaling in the rat prefrontal cortex

Objective(s): Methamphetamine is a stimulant compound that penetrates readily into the central nervous system. Repeated exposure to methamphetamine leads to damage in the dopaminergic and serotonergic axons of selected brain regions. Previous studies showed that cinnamaldehyde improved memory impairment in animals. In the present study, we aimed to elucidate the effects of cinnamaldehyde on met...

متن کامل

Relaxatory Effect of Gamma-Aminobutyric Acid (GABA) is Mediated by Same Pathway in Diabetic and Normal Rat Mesenteric Bed vessel

Objective(s) Diabetes related dysfunction of resistance vessels is associated with vascular occlusive diseases. Vasorelaxant agents may have a role in control of diabetic cardiovascular complications. Gamma aminobutyric acid (GABA) has demonstrated to cause vasorelaxation. The present study was designed to determine i) the vasorelaxatory effect of GABA on diabetic vessels and ii) the role of e...

متن کامل

P142: The Prefrontal Cortex and Stress-Related Psychopathologies

The prefrontal cortex (PFC) plays a central role in processing both normal and pathological affective states and it is among the brain regions most closely associated with stress-related psychopathology in humans. The ventromedial PFC (vmPFC) in particular has been shown to be required for healthy emotional regulation, social function and risk assessment and decision-making. Also this region ex...

متن کامل

Altered neurochemical levels in the rat brain following chronic nicotine treatment.

Converging evidence shows that neurochemical systems are crucial mediators of nicotine dependence. Our present study evaluates the effect of 3-month chronic nicotine treatment on the levels of multiple quaternary ammonium compounds as well as glutamate and gamma aminobutyric acid in the rat prefrontal cortex, dorsal striatum and hypothalamus. We observed a marked decrease of acetylcholine level...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of pharmacology and experimental therapeutics

دوره 285 1  شماره 

صفحات  -

تاریخ انتشار 1998